1 Vector Calculus

We focus in this section on the 3-dimensional vector space.
We can write vectors using orthogonal unit vectors along the coordinate axes, e.g.

$$
\mathbf{v}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}
$$

You should be very familiar with the basic vector algebra such as addition, magnitude, etc. The dot and vector products are defined as follows:

- dot/inner product:

$$
\mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

where

$$
\begin{aligned}
& \mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \\
& \mathbf{b}=b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}
\end{aligned}
$$

and it can be shown that

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \angle(\mathbf{a}, \mathbf{b})
$$

- cross/vector product:

$$
\mathbf{v}=\mathbf{a} \times \mathbf{b}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right]=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

\mathbf{v} is perpendicular to the plane of \mathbf{a} and \mathbf{b}, with its direction defined by the right-hand rule. Geometrically, $|\mathbf{v}|=|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}||\sin \angle(\mathbf{a}, \mathbf{b})|$ is the area of the parallelogram constructed by \mathbf{a} and \mathbf{b}.

In more details, the determinant form of the vector product is obtained as follows. Based on the right-hand rule and the definition of cross products, we have

$$
\begin{gathered}
\mathbf{i} \times \mathbf{i}=0, \mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{i} \times \mathbf{k}=-\mathbf{j} \\
\mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{j} \times \mathbf{j}=0, \mathbf{j} \times \mathbf{k}=\mathbf{i} \\
\mathbf{k} \times \mathbf{i}=\mathbf{j}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \mathbf{k} \times \mathbf{k}=0
\end{gathered}
$$

and hence

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}\right) \times\left(b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}\right) \\
& =a_{x} b_{y} \mathbf{k}-a_{x} b_{z} \mathbf{j}-a_{y} b_{x} \mathbf{k}+a_{y} b_{z} \mathbf{i}+a_{z} b_{x} \mathbf{j}-a_{z} b_{y} \mathbf{i}
\end{aligned}
$$

which exactly equals the determinant formula.
To see the intuition of $|\mathbf{v}|=|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}||\sin \angle(\mathbf{a}, \mathbf{b})|$, let \mathbf{a} be aligned with the \mathbf{i} axis and \mathbf{b} be decomposed as $|\mathbf{b}| \cos \angle(\mathbf{a}, \mathbf{b}) \mathbf{i}+|\mathbf{b}| \sin \angle(\mathbf{a}, \mathbf{b}) \mathbf{j}$ (if not, we can rotate \mathbf{a} and \mathbf{b} by the same angle to achieve the alignment). Then

$$
\begin{aligned}
|\mathbf{v}| & =|\mathbf{a} \times \mathbf{b}|=\| \mathbf{a}|\mathbf{i} \times(|\mathbf{b}| \cos \angle(\mathbf{a}, \mathbf{b}) \mathbf{i}+|\mathbf{b}| \sin \angle(\mathbf{a}, \mathbf{b}) \mathbf{j})| \\
& =\| \mathbf{a}|\mathbf{i} \times|\mathbf{b}| \sin \angle(\mathbf{a}, \mathbf{b}) \mathbf{j}| \\
& =|\mathbf{a}||\mathbf{b}||\sin \angle(\mathbf{a}, \mathbf{b})|
\end{aligned}
$$

Triple scalar product:

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

is the volume of the parallelepiped constructed by \mathbf{a}, \mathbf{b}, and \mathbf{c}.
Let f be a scalar function of x, y, and $z . \nabla f$ is the gradient vector

$$
\nabla f=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]
$$

and we can write

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

from which we can define the gradient operator

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

Divergence and Curl: if

$$
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}
$$

then the divergence (a scalar) is defined by

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
$$

and the curl by

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Exercise 1. Let a, b, and \mathbf{c} be 3 -dimensional vectors. Prove that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

