Estimating the Frequency Response of a Transfer Function

Xu Chen
xchen@engr.uconn.edu
Assistant Professor
Department of Mechanical Engineering
University of Connecticut

February 11, 2015

1 Main results

Let u and y be the input and the output of a linear time-invariant (LTI) transfer function $G_{y u}$. The frequency response of $G_{y u}$ is the quotient of $\Phi_{y u}$, the cross power spectral density of u and y, and $\Phi_{u u}$, the power spectral density of u :

$$
G_{y u}=\frac{\Phi_{y u}}{\Phi_{u u}}
$$

It is also true that

$$
G_{y u}=\frac{\Phi_{y y}}{\Phi_{y u}}
$$

2 The underlying theory

2.1 Definitions

- $X_{x x}(l)$: auto covariance of a stationary random process x, defined by

$$
X_{x x}(l)=E[(x(k)-E[x])(x(k+l)-E[x])]
$$

where $E[]$ is the operation of computing the mean.

- $X_{x y}(l)$: cross covariance between two stationary random processes x and y, defined by

$$
X_{x y}(l)=E[(x(k)-E[x])(y(k+l)-E[y])]
$$

Under mild conditions (called ergodic) that are commonly satisfied in practice, auto and cross covariances can be computed by the ensemble averages, namely

$$
\begin{aligned}
X_{x x}(l) & =E[(x(k)-E[x])(x(k+l)-E[x])]=\overline{(x(k)-E[x])(x(k+l)-E[x])} \\
& =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{j=-N}^{N}(x(j)-E[x])(x(j+l)-E[x])
\end{aligned}
$$

- $\Phi_{x x}(\omega)$: power spectral density is the Fourier transform of auto covariance, defined by

$$
\Phi_{x x}(\omega)=\sum_{l=-\infty}^{\infty} X_{x x}(l) e^{-j \omega l}
$$

Remark: Given the time sequence of x and y, there are existing functions to calculate the power spectral densities in MATLAB.

2.2 Derivations

Consider passing a stationary random process $u(k)$ through an LTI transfer function $G(z)$. The resulting output is defined by the convolution:

$$
y(k)=g(k) * u(k)=\sum_{i=-\infty}^{\infty} g(i) u(k-i)
$$

where $g(k)$ is the impulse response of $G(z)$.

- if u is zero mean and ergodic, then

$$
\begin{aligned}
X_{u y}(l)=u(k) \sum_{i=-\infty}^{\infty} u(k+l-i) g(i) & \\
& =\sum_{i=-\infty}^{\infty} \overline{u(k) u(k+l-i)} g(i)=\sum_{i=-\infty}^{\infty} X_{u u}(l-i) g(i)=g(l) * X_{u u}(l)
\end{aligned}
$$

similarly

$$
X_{y y}(l)=\sum_{i=-\infty}^{\infty} X_{y u}(l-i) g(i)=g(l) * X_{y u}(l)
$$

- in pictures we have

$$
X_{u u}(l) \longrightarrow G(z) \longrightarrow X_{u y}(l) ; X_{y u}(l) \longrightarrow G(z) \longrightarrow X_{y y}(l)
$$

- for a general LTI system

$$
u(k) \longrightarrow G(z)=\frac{b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}}{z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}} \quad \longrightarrow y(k)
$$

convolution in time domain is multiplication in frequency domain:

$$
Y(z)=G(z) U(z) \Leftrightarrow Y\left(e^{j \omega}\right)=G\left(e^{j \omega}\right) U\left(e^{j \omega}\right)
$$

- hence for the auto/cross covariances:

$$
X_{u u}(l) \longrightarrow G(z) \longrightarrow X_{u y}(l) ; X_{y u}(l) \longrightarrow G(z) \longrightarrow X_{y y}(l)
$$

we have

$$
\begin{aligned}
& \Phi_{y y}(\omega)=G\left(e^{j \omega}\right) \Phi_{y u}(\omega) \\
& \Phi_{u y}(\omega)=G\left(e^{j \omega}\right) \Phi_{u u}(\omega)
\end{aligned}
$$

3 Reference

Lecture 3: probability review, ME 233 Lecture Notes by Xu Chen, UC Berkeley 2014 spring, available at http://www.me.berkeley.edu/ME233/sp14/index.html.

