MEB895, UConn, Fall 2015 Prof. Xu Chen

System Identification and Recursive Least
Squares

Big picture

We have been assuming knwoledge of the plant in controller design.
In practice, plant models come from:

» modeling by physics: Newton's law, conservation of energy, etc
» (input-output) data-based system identification

The need for system identification and adaptive control come from
» unknown plants

» time-varying plants

» known disturbance structure but unknown disturbance
parameters
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System modeling
Consider the input-output relationship of a plant:

z 1B (z1
u(k) —= G, (z_l) = AI(BZ(_l) ) —y (k)

or equivalently

(k) — (k1) (1)

where
B(Z_l):b0+blz_1+'"+me_m; A(Z_l):1+alz_1+"'+an2_n
» y(k+1) is a linear combination of y (k), ... , y(k+1—n) and

u(k), .o u(k—m):
y(k+1)= Za,y(k+1—l)+Zbu — 1) (2)
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System modeling

Define parameter vector 0 and regressor vector ¢ (k):
0 é [317327"'an7b07b17'” 7bm]T
¢(k)é[_y(k)7 7_y(k+1_n)7u(k)7u(k_1)7"' 7U(k_m)]T

» (2) can be simply written as:

y(k+1)=67¢ (k) (3)

» ¢ (k) and y(k+1) are known or measured

» goal: estimate the unknown 6
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Parameter estimation

Suppose we have an estimate of the parameter vector:

9:[31,32,"‘3n,b0,b1,"‘,bm]

At time k, we can do estimation:

j(k+1)=6" (k)¢ (k) (4)

where O(k) £ [a1(k),32(k), - - an(k), bo(k), b1 (k), -+, bm(K)]T
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Parameter identification by least squares (LS)
At time k, the least squares (LS) estimate of 8 minimizes:

k

Je= X [y -7 kot -1 (5
Solution:
Jk—l__fl(ymz T(k) 0 (i~ 1)0T (i~ 1)8 (k) ~2y ()97 (i-1)8 (k)
Letting 9J, /90 (k) = 0 yields
é(k)[Iﬁlmflnﬂ(i1)]1ii1¢(f1)y(f> (6

\ 4

F(k)
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Recursive least squares (RLS)
At time k+ 1, we know u(k+ 1) and have one more measurement
y(k+1).
Instead of (5), we can do better by minimizing
k+1

S =Y )= 8T (kD)o 1)

i=1
whose solution is

F(k+1)
rk—l—l k—l—l
O(k+1)= [Zgbl—lqb (/—1)] Z¢I—1 (7)

recursive least squares (RLS): no need to do the matrix inversion
in (7), 6(k+1) can be obtained by

O(k+1) = O(k) + [correction term] (8)
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RLS parameter adaptation
Goal: to obtain 6(k+1) = (k) + [correction term] (9)

Derivations:

k+1

Flk+1) =Y 0(i-1)97 (i-1)=F (k) " +9 (k)¢ (k)

i=1

k+1

6(k+1)=F(k+1) Z o (i—1)y (i)

= F(k+1) Zq& i—=1)y(i)+¢(k)y(k+1)

F(k+1)[F (01 8.(k)+0 (k) (k-+1)]
Flk+1) [ (F(k+1) =0 (K)9T (k) 6.(K)+9 (K)y (k+1)
6(K)+F(k+1)0 (k) |y (k+1) =87 (k) 9 (k)] (10)
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RLS parameter adaptation

Define

7o(k+1) = 87 (k)g(k)
°(k+1) = y(k+1)—p°(k+1)

(10) is equivalent to

O(k+1)=0(k)+F(k+1)p(k)e®(k+1) (11)
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RLS adaptation gain recursion
F (k+1) is called the adaptation gain, and can be updated by

F(k)o(k)o T (k)F(k
A+ = PO~ T 8e6) )

Proof:

» matrix inversion lemma: if A is nonsingular, B and C have
compatible dimensions, then

(A+BC) ' =AT1—AB(CA'B+1) " CA !
» note the algebra

k+1

~1
F(k+1>=[;¢<i1w(f1)] =[Fl +o (k9T ()]

1

-1
= F(K) = F(Ro(K) (0T F(K (k) +1) 97 (K)F (k)
which gives (12)
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RLS parameter adaptation

An alternative representation of adaptation law (11):

:
(12) = F(k+1)0 (k) = F(K9 (1) 00

_ F(9(k)
T+ 9T (K)F (K)o (k)

Hence we have the parameter adaptation algorithm (PAA):

O(k)+F(k+1)¢(k)e°(k+1)

iy F(k)o(k) 0
_e(k)+1+¢T(k)F(k) (k)e (k+1)
F(k)¢ (k)¢ " (k)F(k)

1+ ¢ T (k)F(k)o(k)

O(k+1)

F(k+1) = F(k) —
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PAA implementation

N

» 0(0): initial guess of parameter vector

Fo(k)
T oT(RF(Re(k)E K

» F(0)=o0l: o is a large number, as F (k) is always
none-increasing

6(k+1)=6(k)+

F(k)9(k)9 " (k)F (k)
1+9¢ 7 (k)F(k)¢(k)

F(k+1) = F(k)—
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RLS parameter adaptation

Up till now we have been using the a priori prediction and a priori
prediction error:

§°(k+1) = 0T (k)p(k): after measurement of y (k)
e(k+1) = y(k+1)—y°(k+1)

Further analysis (e.g., convergence of 6 (k)) requires the new
definitions of a posteriori prediction and a posteriori prediction error:

J(k+1) = 0T (k+1)¢(k): after measurement of y (k+1)
e(k+1) = y(k+1)—y(k+1)
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Relationship between € (k+1) and €°(k+1)

Note that

5 _A F(k)o(k) 0
Ok+1) =80+ 157 A a7 U+
= 9T () 0(k+1) =T () 0K+ ¢(7{<()k/;(()k¢;§:<()k)go(k+l)
(k+1) °(k+1)
ot
TR R R R TG Lo O RS
e(k+1) co(hr 1)
Hence
e’ (k+1)
e(k+1 13
e D) = T T () 9(R) (13)

» note: |e(k+1)| <|e°(k+1)| (y(k+1) is more accurate than
y°(k+1))
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A posteriori RLS parameter adaptation

With (13), we can write the PAA in the a posteriori form

O(k+1)=0(k)+F(k)o(k)e(k+1) (14)

which is not implementable but is needed for stability analysis.
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Forgetting factor

motivation

» previous discussions assume the actual parameter vector 0 is
constant

» adaptation gain F (k) keeps decreasing, as
FH(k+1)=F 1 (k) +9 (k)9 (k)

» this means adaptation becomes weaker and weaker

» for time-varying parameters, we need a mechanism to “forget”
the “old’ data
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Forgetting factor

Consider a new cost
k . R 2
Jo=Y Ak [y(/) BT (K)o(i— 1)} L 0<A<1
i=1
» past errors are less weighted:

Je=[y ()87 (K)o (k—1)] 42 [y (k- 1)~ 8T (k)9 (k)]
+ 2 [y(k—z)—éT(k)¢(k—3)]2+...

» the solution is:
F(k)

[ k -1 k
é(k>=[glxk"¢<f—1w<f—1)] YA Tol-1)y() (19
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Forgetting factor

» in (15), the recursion of the adaptation gain is:
Flk+1) ' =AF (k) T+ (ko (k)
or, equivalently

1 F(k)9 (k)97 (k)F(K)
F(k+1) F(k) - A+oT(k)F(k)o(k)

=7 (16)
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Forgetting factor

The weighting can be made more flexible:

__F(k)¢ (k)¢ " (k)F (k) ]
M (k)+ o7 (k)F(k)o(k)

which corresponds to the cost function

Fk+1) = Ml(k) {F(k)

Je= [y () =0T (K0 (k=) + A (k1) [y (k1) ~ 87 (K)o (k—2)]

A 2
+7Ll(k—1)zl(k—2)[y(k—z)—eT(k)¢(k—3)} .

i.e. (assuming Hjlf:_kl M()=1)

k k—1 R 2
K=Y { ( 17 (j)) Y-8 (K)9(i—1)] }

i=1
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Forgetting factor

The general form of the adaptation gain is:

Flk+1) = 3

F(k)o(k)o T (k)F (k)
F(k)— 17
[ o iggigwwk)ﬂkm(k)] o
which comes from:

Flk+1) " =2 (k)F (k) +22(k) o (K)o (k)

with 0 < A3 (k) <1 and 0 < A5 (k) <2 (for stability requirements,
will come back to this soon).

A(k) A2 (k) PAA
1 0 constant adaptation gain
1 1 least square gain
<1 1 least square gain with forgetting factor
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*Influence of the initial conditions

If we initialize F (k) and 6 (k) at Fy and 6, we are actually
minimizing

2

J=(8(k)—0) " F5 (6()—60) + é e [y(1)~ 87 (ko (i~ 1)]

where «; is the weighting for the error at time /. The least square
parameter estimate is

~

k
6 (k)= Fo o+ Y oo (i— 1)y(i)]

i=1

B -1
F01+;a,-¢(f—1)¢T(f—1)]

We see the relative importance of the initial values decays with time.
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*Influence of the initial conditions

If it is possible to wait a few samples before the adaptation, proper
initial values can be obtained if the recursion is started at time kg

with

ko -1
F (ko) = ;a,-¢(:—1)¢T(f—1)
ko
6 (ko) = F (ko) ;OMP (i—1)y(i)
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