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Internal Model Principle and Repetitive Control

Big picture
review of integral control in PID design
example:

+

D(s)

��0 //◦E(s) // C (s)
+
//◦ // P (s) // Y (s)−OO

where

P (s) =
1

ms +b , C (s) = kp +ki
1
s +kds, kp,ki ,kd > 0

I the integral action in PID control perfectly rejects
(asymptotically) constant disturbances (D (s) = do/s):

E (s) =
−P (s)

1+P (s)C (s)
D (s) =

−do
(m+kd )s2 + (kp +b)s +ki

⇒e (t)→ 0
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Big picture
review of integral control in PID design

+

D(s)

��0 //◦E(s) // C (s)
+
//◦ // P (s) // Y (s)−OO

the “structure” of the reference/disturbance is built into the integral
controller:

I controller:

C (s) = kp +ki
1
s +kds =

1
s
(
kds2 +kps +ki

)
I constant disturbance:

d (t) = do ⇔L {d (t)}=
1
s do
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General case: internal model principle (IMP)

Theorem (Internal Model Principle)

+

D(s)=Bd (s)
Ad (s)

��R(s)
+ //◦E(s) // C (s) = Bc(s)

Ac(s) +
//◦ // P (s) =

Bp(s)
Ap(s)

// Y (s)−OO

Assume Bp (s) = 0 and Ad (s) = 0 do not have common roots.
If the closed loop is asymptotically stable,
and Ac (s) can be factorized as Ac (s) = Ad (s)A′c (s),
then the disturbance is asymptotically rejected.
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General case: internal model principle (IMP)

+

D(s)=Bd (s)
Ad (s)

��R(s)
+ //◦E(s) // C (s) = Bc(s)

Ac(s) +
//◦ // P (s) =

Bp(s)
Ap(s)

// Y (s)−OO

Proof: The steady-state error response to the disturbance is

E (s) =
−P (s)

1+P (s)C (s)
D (s) =

−Bp (s)Ac (s)

Ap (s)Ac (s) +Bp (s)Bc (s)

Bd (s)

Ad (s)

=
−Bp (s)A′c (s)Bd (s)

Ap (s)Ac (s) +Bp (s)Bc (s)

where all roots of Ap (s)Ac (s) +Bp (s)Bc (s) = 0 are on the left half
plane. Hence e (t)→ 0
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Internal model principle
discrete-time case:

Theorem (Discrete-time IMP)

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
Ac(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Assume Bp
(
z−1)= 0 and Ad

(
z−1)= 0 do not have common zeros.

If the closed loop is asymptotically stable,
and Ac

(
z−1) can be factorized as Ac

(
z−1)= Ad

(
z−1)A′c (z−1),

then the disturbance is asymptotically rejected.

Proof: analogous to the continuous-time case.
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Internal model principle
the disturbance structure:

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
Ac(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

example disturbance structures:

d (k) Ad (z−1)
constant do 1− z−1

cos(ω0k) and sin(ω0k) 1−2z−1 cos(ω0) + z−2

shifted ramp signal d (k) = αk + β 1−2z−1 + z−2

periodic: d (k) = d (k−N) 1− z−N
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Internal model principle

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

observations:
I the controller contains a “counter disturbance” generator
I high-gain control: the open-loop frequency response

P
(
e−jω)C (e−jω)=

e−djωBp
(
e−jω)Bc

(
e−jω)

Ap (e−jω)A′c (e−jω)Ad (e−jω)

is large at frequencies where Ad (e−jω) = 0
I D

(
z−1)= Bd

(
z−1)/Ad

(
z−1) means d (k) is the impulse

response of Bd
(
z−1)/Ad

(
z−1):

Ad
(
z−1)d (k) = Bd

(
z−1)

δ (k)
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Outline

1. Big Picture
review of integral control in PID design

2. Internal Model Principle
theorems
typical disturbance structures

3. Repetitive Control
use of internal model principle
design by pole placement
design by stable pole-zero cancellation
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Repetitive control
Repetitive control focus on attenuating periodic disturbances with

Ad
(
z−1)= 1− z−N

Control structure:

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

It remains to design Bc
(
z−1) and A′c

(
z−1). We discuss two

methods:
I pole placement
I (partial) cancellation of plant dynamics: prototype repetitive

control
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1, Pole placement: prerequisite
Theorem
Consider G (z) = β (z)

α(z) = β1zn−1+β2zn−2+···+βn
zn+α1zn−1+···+αn

. α (z) and β (z) are
coprime (no common roots) iff S (Sylvester matrix) is nonsingular:

S =



1 0 . . . 0 β1 0 . . . . . . 0

α1 1
. . .

... β2 β1
. . .

...
...

. . . . . . 0
...

. . . . . . . . .
...

... α1 1 βn−1
. . . . . . 0

αn−1 α1 βn
. . . . . . β1

αn
. . .

... 0 βn
. . . β2

0 αn
. . .

...
...

. . . . . . . . .
...

...
. . . . . . αn−1

...
. . . βn βn−1

0 . . . 0 αn 0 . . . . . . 0 βn


(2n−1)×(2n−1)
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1, Pole placement: prerequisite

Example:

G (z) =
β1zn−1 + β2zn−2 + · · ·+ βn
zn + α1zn−1 + · · ·+ αn

=
zn−1 + α1zn−2 + · · ·+ αn−1

zn + α1zn−1 + · · ·+ αn−1z +0

i.e.

β1 = 1
βi = αi−1 ∀i ≥ 2
αn = 0

α (z) and β (z) are not coprime, and S is clearly singular.
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1, Pole placement: big picture

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Disturbance model: Ad
(
z−1)= 1− z−N

Pole placement assigns the closed-loop characteristic equation:

z−dBp
(
z−1)Bc

(
z−1)+Ap

(
z−1)A′c (z−1)Ad

(
z−1)

= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q︸ ︷︷ ︸
η(z−1)

which is in the structure of a Diophantine equation.
Design procedure: specify the desired closed-loop dynamics η

(
z−1);

match coefficients of z−i on both sides to get Bc
(
z−1) and A′c

(
z−1).
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1, Pole placement: big picture

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// Bc(z−1)
A′c(z−1)Ad (z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Diophantine equation in Pole placement:

z−dBp
(
z−1)Bc

(
z−1)+Ap

(
z−1)A′c (z−1)Ad

(
z−1)

= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q︸ ︷︷ ︸
η(z−1)

Questions:
I what are the constraints for choosing η

(
z−1)?

I how to guarantee unique solution in Diophantine equation?
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Design and analysis procedure

General procedure of control design:
I Problem definition
I Control design for solution (current stage)
I Prove stability
I Prove stability robustness
I Case study or implementation results
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1, Pole placement: details
Theorem (Diophantine equation)
Given η

(
z−1)= 1+ η1z−1 + η2z−2 + · · ·+ ηqz−q

α
(
z−1)= 1+ α1z−1 + · · ·+ αnz−n

β
(
z−1)= β1z−1 + β2z−2 + · · ·+ βnz−n

The Diophantine equation
α
(
z−1)

σ
(
z−1)+ β

(
z−1)

γ
(
z−1)= η

(
z−1)

can be solved uniquely for σ
(
z−1) and γ

(
z−1)

σ
(
z−1)= 1+ σ1z−1 + · · ·+ σn−1z−(n−1)

γ
(
z−1)= γ0 + γ1z−1 + · · ·+ γn−1z−(n−1)

if the numerators of α
(
z−1) and β

(
z−1) are coprime and

deg
(
η
(
z−1))= q ≤ 2n−1
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1, Pole placement: details
Proof of Diophantine equation Theorem (key ideas):

α
(
z−1)

σ
(
z−1)︸ ︷︷ ︸

unknown

+β
(
z−1)

γ
(
z−1)︸ ︷︷ ︸

unknown

= η
(
z−1)

Matching the coefficients of z−i gives (see one numerical example in
course reader)

S



σ1
σ2
...

σn−1
γ0
...

γn−1


+



α1
α2
...

αn
0
...
0


=



η1
η2
...

ηn−1
ηn
...

η2n−1


The coprime condition assures S is invertible. degη

(
z−1)≤ 2n−1

assures the proper dimension on the right hand side of the equality.
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2, Prototype repetitive control: simple case

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

Ad
(
z−1)= 1− z−N

If all poles and zeros of the plant are stable, then prototype
repetitive control uses

C
(
z−1)=

krz−N+dAp
(
z−1)(

1− z−N
)
Bp (z−1)

Theorem (Prototype repetitive control)
Under the assumptions above, the closed-loop system is
asymptotically stable for 0< kr < 2
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2, Prototype repetitive control: stability
Proof of Theorem on prototype repetitive control:
From

1+
krz−N+dAp

(
z−1)(

1− z−N
)
Bp (z−1)

z−dBp
(
z−1)

Ap (z−1)
= 0

the closed-loop characteristic equation is

Ap
(
z−1)Bp

(
z−1)[1− (1−kr )z−N

]
= 0

I roots of Ap
(
z−1)Bp

(
z−1)= 0 are all stable

I roots of 1− (1−kr )z−N = 0 are

|1−kr |
1
N ej 2π i

N , i = 0,±1, . . . , for 0< kr ≤ 1

|1−kr |
1
N ej( 2π i

N + π

N ), i = 0,±1, . . . , for 1< kr

which are all inside the unit circle
Internal Model Principle and Repetitive Control IMP-18

2, Prototype repetitive control: stability robustness
Consider the case with plant uncertainty

+

d(k)

��r(k)+//◦ // kr z−N+d Ap(z−1)
(1−z−N)Bp(z−1) +

//◦ // z
−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

N open-loop poles on the unit circle
Root locus example: N = 4, 1+ ∆

(
z−1)= q/(z−p)
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∀ kr > 0, the closed-
loop system is now
unstable!
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2, Prototype repetitive control: stability robustness

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

To make the controller robust to plant uncertainties, do instead

C
(
z−1)=

krq(z ,z−1)z−N+dAp
(
z−1)(

1−q(z ,z−1)z−N
)
Bp (z−1)

(1)

q(z ,z−1) : low-pass filter. e.g. zero-phase low pass
α1z−1 + α0 + α1z

α0 +2α1
which shifts the marginary stable open-loop poles to be inside the
unit circle:

Ap
(
z−1)Bp

(
z−1)[1− (1−kr )q(z ,z−1)z−N

]
= 0
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2, Prototype repetitive control: extension

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

If poles of the plant are stable but NOT all zeros are stable, let
Bp(z−1) = B−p (z−1)B+

p (z−1) [B−p
(
z−1)—the uncancellable part] and

C
(
z−1)=

krz−N+µAp(z−1)B−p (z)z−µ

(1− z−N)B+
p (z−1)z−db

, b > max
ω∈[0,π]

|B−p (ejω)|2 (2)

Similar as before, can show that the closed-loop system is stable
(in-class exercise).
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2, Prototype repetitive control: extension
Exercise: analyze the stability of

+

D(z−1)=
Bd(z−1)
Ad (z−1)

��R(z−1)+ //◦
E(z−1)

// C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

Y (z−1)
//

−OO

C
(
z−1)=

krz−N+µAp(z−1)B−p (z)z−µ

(1− z−N)B+
p (z−1)z−db

, b > max
ω∈[0,π]

|B−p (ejω)|2 (3)

Key steps:
∣∣∣∣B−p (ejω)B−p (e−jω)

b

∣∣∣∣< 1;
∣∣∣∣kr B−p (ejω)B−p (e−jω)

b −1
∣∣∣∣< 1; all

roots from
z−N

[
kr B−p (z)B−p

(
z−1)

b −1
]
+1 = 0

are inside the unit circle.
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2, Prototype repetitive control: extension

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // z

−d Bp(z−1)
Ap(z−1)

(
1+ ∆

(
z−1)) y(k) //

−OO

Robust version in the presence of plant uncertainties:

C
(
z−1)=

krz−N+µq(z ,z−1)Ap(z−1)B−p (z)z−µ

(1−q(z ,z−1)z−N)B+
p (z−1)z−db

(4)

where

q(z ,z−1) : low-pass filter. e.g. zero-phase low pass
α1z−1 + α0 + α1z

α0 +2α1

and µ is the order of B−p (z)
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Example

+

d(k)

��r(k)+//◦ // C
(
z−1)

+
//◦ // Plant

y(k) //
−OO

disturbance period: N = 10; nominal plant:

z−dBp
(
z−1)

Ap (z−1)
=

z−1

(1−0.8z−1)(1−0.7z−1)

C
(
z−1)= kr

(
1−0.8z−1)(1−0.7z−1)q(z ,z−1)z−10

z−1 (1−q(z ,z−1)z−10)
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Additional reading

I X. Chen and M. Tomizuka, “An Enhanced Repetitive Control
Algorithm using the Structure of Disturbance Observer,” in
Proceedings of 2012 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, Taiwan, Jul. 11-14, 2012,
pp. 490-495

I X. Chen and M. Tomizuka, “New Repetitive Control with
Improved Steady-state Performance and Accelerated Transient,”
IEEE Transactions on Control Systems Technology, vol. 22, no.
2, pp. 664-675 (12 pages), Mar. 2014
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Summary

1. Big Picture
review of integral control in PID design

2. Internal Model Principle
theorems
typical disturbance structures

3. Repetitive Control
use of internal model principle
design by pole placement
design by stable pole-zero cancellation
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