PAA with Parallel Predictors

Big picture: we know now...

$$
u(k) \longrightarrow \frac{B\left(z^{-1}\right)}{A\left(z^{-1}\right)} \longrightarrow y(k+1)
$$

simply means:

$$
\begin{aligned}
y(k+1) & =B\left(z^{-1}\right) u(k)-\left(A\left(z^{-1}\right)-1\right) y(k+1) \\
& =\theta^{T} \phi(k)
\end{aligned}
$$

In RLS:
$\hat{y}^{\circ}(k+1)=\hat{\theta}^{T}(k) \phi(k)=\hat{B}\left(z^{-1}, k\right) u(k)-\left(\hat{A}\left(z^{-1}, k\right)-1\right) y(k+1)$
Understanding the notation: if $B\left(z^{-1}\right)=b_{o}+b_{1} z^{-1}+\cdots+b_{m} z^{-m}$, then $\hat{B}\left(z^{-1}, k\right)=\hat{b}_{o}(k)+\hat{b}_{1}(k) z^{-1}+\cdots+\hat{b}_{m}(k) z^{-m}$
Remark: z^{-1}-shift operator; some references use q^{-1} instead

RLS is a series-parallel adjustable system
RLS in a posteriori form:

$$
\hat{y}(k+1)=\hat{B}\left(z^{-1}, k+1\right) u(k)-\left(\hat{A}\left(z^{-1}, k+1\right)-1\right) y(k+1)
$$

prediction error:

$$
\varepsilon(k+1)=y(k+1)-\hat{y}(k+1)=\hat{A}\left(z^{-1}, k+1\right) y(k+1)-\hat{B}\left(z^{-1}, k+1\right) u(k)
$$

A series-parallel structure: $\hat{A}\left(z^{-1}, k+1\right)$-in series with plant; $\hat{B}\left(z^{-1}, k+1\right)$-in parallel with the plant

Observation

If hyperstability holds such that $\varepsilon(k+1) \rightarrow 0, \hat{y}(k+1) \rightarrow y(k+1)$, it seems fine to do instead:

$$
\begin{equation*}
\hat{y}(k+1)=\hat{B}\left(z^{-1}, k+1\right) u(k)-\left(\hat{A}\left(z^{-1}, k+1\right)-1\right) \hat{y}(k+1) \tag{1}
\end{equation*}
$$

i.e.

$$
u(k) \longrightarrow \frac{\hat{B}\left(z^{-1}, k+1\right)}{\hat{A}\left(z^{-1}, k+1\right)} \longrightarrow \hat{y}(k+1)
$$

then we have a parallel structure

- it turns out this brings certain advantages

Other names

is also called an output-error method

is also called an equation-error method

Benefits of parallel algorithms

Intuition: when there is noise,

provides better convergence of $\hat{\theta}$ than

We will talk about the PAA convergence in a few more lectures.

Outline

1. Big picture

Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)
2. RLS-based parallel PAA

Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation gain
3. Parallel PAAs with relaxed SPR requirements
4. PAAs with time-varying adaptation gains (revisit)

RLS based parallel PAA

PAA summary:

- a priori

$$
\hat{\theta}(k+1)=\hat{\theta}(k)+\frac{F(k) \phi(k)}{1+\phi^{T}(k) F(k) \phi(k)} \varepsilon^{o}(k+1)
$$

- a posteriori

$$
\hat{\theta}(k+1)=\hat{\theta}(k)+F(k) \phi(k) \varepsilon(k+1)
$$

$$
F^{-1}(k+1)=\lambda_{1}(k) F^{-1}(k)+\lambda_{2}(k) \phi(k) \phi^{T}(k)
$$

$\phi^{T}(k)=[-\hat{y}(k),-\hat{y}(k-1), \ldots,-\hat{y}(k+1-n), u(k), \ldots, u(k-m)]$

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
parameter estimation error :

$$
\tilde{\theta}(k+1)=\tilde{\theta}(k)+F(k) \phi(k) \varepsilon(k+1)
$$

a posteriori prediction error : $y(k+1)=\frac{B\left(z^{-1}\right)}{A\left(z^{-1}\right)} u(k)$ gives

$$
\begin{aligned}
B\left(z^{-1}\right) u(k) & =A\left(z^{-1}\right) y(k+1) \\
\hat{B}\left(z^{-1}, k+1\right) u(k) & =\hat{A}\left(z^{-1}, k+1\right) \hat{y}(k+1)
\end{aligned}
$$

hence

$$
\begin{aligned}
& A\left(z^{-1}\right) y(k+1)-\hat{A}\left(z^{-1}, k+1\right) \hat{y}(k+1) \pm A\left(z^{-1}\right) \hat{y}(k+1) \\
&=B\left(z^{-1}\right) u(k)-\hat{B}\left(z^{-1}, k+1\right) u(k)
\end{aligned}
$$

i.e. $A\left(z^{-1}\right) \varepsilon(k+1)=\left[B\left(z^{-1}\right)-\hat{B}\left(z^{-1}, k+1\right)\right] u(k)$

$$
-\left[A\left(z^{-1}\right)-\hat{A}\left(z^{-1}, k+1\right)\right] \hat{y}(k+1)
$$

PAA with Parallel Predictors

Stability of RLS based parallel PAA

step 1: transformation to a feedback structure a posteriori prediction error (cont'd):

$$
\begin{aligned}
& A\left(z^{-1}\right) \varepsilon(k+1)= \overbrace{\left[B\left(z^{-1}\right)-\hat{B}\left(z^{-1}, k+1\right)\right] u(k)}^{[\star]} \\
&-\left[A\left(z^{-1}\right)-\hat{A}\left(z^{-1}, k+1\right)\right] \hat{y}(k+1)
\end{aligned}
$$

Look at $[\star]: B\left(z^{-1}\right)=b_{0}+b_{1} z^{-1}+\cdots+b_{m} z^{-m}$ gives

$$
\begin{aligned}
& {\left[B\left(z^{-1}\right)-\hat{B}\left(z^{-1}, k+1\right)\right] u(k) } \\
= & {\left[\begin{array}{c}
b_{0}-\hat{b}_{0}(k+1) \\
b_{1}-\hat{b}_{1}(k+1) \\
\vdots \\
b_{m}-\hat{b}_{m}(k+1)
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
z^{-1} \\
\vdots \\
z^{-m}
\end{array}\right] u(k)=\left[\begin{array}{c}
b_{0}-\hat{b}_{0}(k+1) \\
b_{1}-\hat{b}_{1}(k+1) \\
\vdots \\
b_{m}-\hat{b}_{m}(k+1)
\end{array}\right]^{T}\left[\begin{array}{c}
u(k) \\
u(k-1) \\
\vdots \\
u(k-m)
\end{array}\right] }
\end{aligned}
$$

Stability of RLS based parallel PAA
step 1: transformation to a feedback structure
Similarly, for $A\left(z^{-1}\right)=1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}$

$$
\left[\hat{A}\left(z^{-1}, k+1\right)-A\left(z^{-1}\right)\right] \hat{y}(k+1)=\left[\begin{array}{c}
a_{1}-\hat{a}_{1}(k+1) \\
a_{2}-\hat{a}_{2}(k+1) \\
\vdots \\
a_{n}-\hat{a}_{n}(k+1)
\end{array}\right]^{T}\left[\begin{array}{c}
-\hat{y}(k) \\
-\hat{y}(k-1) \\
\vdots \\
-\hat{y}(k+1-n)
\end{array}\right]
$$

Recall: $\quad \theta^{T}=\left[a_{1}, a_{2}, \cdots a_{n}, b_{0}, b_{1}, \cdots, b_{m}\right]^{T}$

$$
\phi(k)=[-\hat{y}(k),-\hat{y}(k-1), \ldots,-\hat{y}(k+1-n), u(k), \ldots, u(k-m)]
$$

hence

$$
\begin{aligned}
A\left(z^{-1}\right) & \varepsilon(k+1)=\left[B\left(z^{-1}\right)-\hat{B}\left(z^{-1}, k+1\right)\right] u(k) \\
& -\left[A\left(z^{-1}\right)-\hat{A}\left(z^{-1}, k+1\right)\right] \hat{y}(k+1)=-\tilde{\theta}^{T}(k+1) \phi(k)
\end{aligned}
$$

Stability of RLS based parallel PAA

step 1: transformation to a feedback structure
PAA equations:

$$
\begin{aligned}
\tilde{\theta}(k+1) & =\tilde{\theta}(k)+F(k) \phi(k) \varepsilon(k+1) \\
A\left(z^{-1}\right) \varepsilon(k+1) & =-\tilde{\theta}^{T}(k+1) \phi(k)
\end{aligned}
$$

equivalent block diagram:

Stability of RLS based parallel PAA

step 2: Popov inequality
We will consider a simplified case with $\underline{F(k)=F \succ 0}$:

The nonlinear block is exactly the same as that in RLS, hence satisfying Popov inequality:

$$
\sum_{k=0}^{k_{1}} \tilde{\theta}^{T}(k+1) \phi(k) \varepsilon(k+1) \geq-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1} \tilde{\theta}(0)
$$

Stability of RLS based parallel PAA

step 3: SPR condition

If $G\left(z^{-1}\right)=\frac{1}{A\left(z^{-1}\right)}$ is SPR, then the PAA is asmptotically hyperstable Remarks:

- RLS has an identity block: $G\left(z^{-1}\right)=1$ which is independent of the plant
- $1 / A\left(z^{-1}\right)$ depends on the plant (usually not SPR)
- several other PAAs are developed to relax the SPR condition

Stability of RLS based parallel PAA: extension For the case of a time-varying $F(k)$ with

$$
F^{-1}(k+1)=\lambda_{1}(k) F^{-1}(k)+\lambda_{2}(k) \phi(k) \phi^{T}(k)
$$

the nonlinear block is more involved; we'll prove later, that it requires

$$
\frac{1}{A\left(z^{-1}\right)}-\frac{1}{2} \lambda, \text { where } \lambda=\max _{k} \lambda_{2}(k)<2, \text { to be SPR }
$$

Outline

1. Big picture

Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)
2. RLS-based parallel PAA

Formulas
Stability requirement for PAAs with fixed adaptation gain
Stability requirement for PAAs with time-varying adaptation gain
3. Parallel PAAs with relaxed SPR requirements
4. PAAs with time-varying adaptation gains (revisit)

Parallel algorithm with a fixed compensator

 Instead of:$$
\begin{gathered}
\hat{\theta}(k+1)=\hat{\theta}(k)+\frac{F(k) \phi(k)}{1+\phi^{T}(k) F(k) \phi(k)} \varepsilon^{o}(k+1) \\
F^{-1}(k+1)=\lambda_{1}(k) F^{-1}(k)+\lambda_{2}(k) \phi(k) \phi^{T}(k) \\
\phi^{T}(k)=[-\hat{y}(k),-\hat{y}(k-1), \ldots,-\hat{y}(k+1-n), u(k), \ldots, u(k-m)] \\
\text { do: } \quad \hat{\theta}(k+1)=\hat{\theta}(k)+\frac{F(k) \phi(k)}{1+\phi^{T}(k) F(k) \phi(k)} v^{o}(k+1)
\end{gathered}
$$

where

$$
\begin{aligned}
v(k+1) & =C\left(z^{-1}\right) \varepsilon(k+1)=\left(c_{0}+c_{1} z^{-1}+\ldots c_{n} z^{-n}\right) \varepsilon(k+1) \\
v^{o}(k+1) & =c_{0} \varepsilon^{o}(k+1)+c_{1} \varepsilon(k)+\ldots c_{n} \varepsilon(k-n+1)
\end{aligned}
$$

Parallel algorithm with a fixed compensator

The SPR requirement becomes

$$
\begin{equation*}
\frac{C\left(z^{-1}\right)}{A\left(z^{-1}\right)}-\frac{\lambda}{2}, \lambda=\max _{k} \lambda_{2}(k)<2 \tag{2}
\end{equation*}
$$

should be SPR.
Remark:

- if c_{i} 's are close to a_{i} 's, (2) approximates $1-\lambda / 2>0$, and hence is likely to be SPR
- problem: $A\left(z^{-1}\right)$ is unknown a priori for the assigning of $C\left(z^{-1}\right)$
- solution: make $C\left(z^{-1}\right)$ to be adjustable as well

Parallel algorithm with an adjustable compensator

If $A\left(z^{-1}\right)=1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}$, let $\hat{C}\left(z^{-1}\right)=1+\hat{c}_{1} z^{-1}+\cdots+\hat{c}_{n} z^{-n}$ and

$$
\begin{aligned}
v(k+1) & =\hat{C}\left(z^{-1}, k+1\right) \varepsilon(k+1) \\
v^{o}(k+1) & =\varepsilon^{o}(k+1)+\sum_{i=1}^{n} \hat{c}_{i}(k) \varepsilon(k+1-i)
\end{aligned}
$$

do

$$
\begin{aligned}
\hat{\theta}_{e}(k+1) & =\hat{\theta}_{e}(k)+\frac{F_{e}(k) \phi_{e}(k)}{1+\phi_{e}^{T}(k) F_{e}(k) \phi_{e}(k)} v^{o}(k+1) \\
\hat{\theta}_{e}^{T}(k) & =\left[\hat{\theta}^{T}(k), \hat{c}_{1}(k), \ldots, \hat{c}_{n}(k)\right] \\
\phi_{e}^{T}(k) & =\left[\phi^{T}(k),-\varepsilon(k), \ldots,-\varepsilon(k+1-n)\right] \\
F_{e}^{-1}(k+1) & =\lambda_{1}(k) F_{e}^{-1}(k)+\lambda_{2}(k) \phi_{e}(k) \phi_{e}^{T}(k)
\end{aligned}
$$

which has guaranteed asymptotical stablility.

General PAA block diagram

$H\left(z^{-1}\right)$	PAA
1	RLS/parallel predictor with adjustable compensator
$1 / A\left(z^{-1}\right)$	parallel predictor
$C\left(z^{-1}\right) / A\left(z^{-1}\right)$	parallel predictor with fixed compensator

General PAA block diagram

- if $F(k)=F, H\left(z^{-1}\right)$ being SPR is sufficient for asymptotic stability
- if $F(k)$ is time-varying, we will show next: $H\left(z^{-1}\right)-\frac{1}{2} \lambda$ being SPR is sufficient for asymptotic stability

Outline

1. Big picture

Series-parallel adjustable system (equation-error method)
Parallel adjustable system (output-error method)
2. RLS-based parallel PAA

Formulas
Stability requirement for PAAs with fixed adaptation gain Stability requirement for PAAs with time-varying adaptation gain
3. Parallel PAAs with relaxed SPR requirements
4. PAAs with time-varying adaptation gains (revisit)

PAA with time-varying adaptation gains

where $F^{-1}(k+1)=\lambda_{1}(k) F^{-1}(k)+\lambda_{2}(k) \phi^{T}(k) \phi(k)$

- unfortunately, the nonlinear block does not satisfy Popov inequality (not passive)

PAA with time-varying adaptation gains

a modification can re-gain the passivity of the feedback block

PAA with time-varying adaptation gains

 a modification can re-gain the passivity of the feedback block

PAA with time-varying adaptation gains

step 1: show that the following is passive

step 2: the following is then passive

step 3: SPR condition for the linear block $H\left(z^{-1}\right)-\frac{\lambda}{2}$

Passivity of the sub nonlinear block

Consider:

$s(k)=\varepsilon(k+1)+\frac{\lambda_{2}(k)}{2} \tilde{\theta}^{T}(k+1) \phi(k)$ gives
$\sum_{k=0}^{k_{1}} w(k) s(k)$
$=\sum_{k=0}^{k_{1}} \tilde{\theta}^{T}(k+1) \phi(k)\left[\varepsilon(k+1)+\frac{\lambda_{2}(k)}{2} \tilde{\theta}^{T}(k+1) \phi(k)\right]$
\Downarrow note that $F^{-1}(k+1)=\lambda_{1}(k) F^{-1}(k)+\lambda_{2}(k) \phi(k) \phi^{T}(k)$
$=\sum_{k=0}^{k_{1}} \tilde{\theta}^{T}(k+1) \phi(k) \varepsilon(k+1)+\frac{1}{2} \tilde{\theta}^{T}(k+1)\left[F^{-1}(k+1)-\lambda_{1}(k) F^{-1}(k)\right] \tilde{\theta}(k+1)$
which is no less than $-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1}(0) \tilde{\theta}(0)$ as shown next.

Proof of passivity of the sub nonlinear block

$$
\tilde{\theta}(k+1)=\tilde{\theta}(k)+F(k) \phi(k) \varepsilon(k+1)
$$

hence

$$
\sum_{k=0}^{k_{1}} \tilde{\theta}^{T}(k+1) \phi(k) \varepsilon(k+1)=\sum_{k=0}^{k_{1}} \tilde{\theta}^{T}(k+1) F^{-1}(k)(\tilde{\theta}(k+1)-\tilde{\theta}(k))
$$

Combining terms and after some algebra (see appendix), we get

$$
\begin{align*}
& \sum_{k=0}^{k_{1}} w(k) s(k)=\sum_{k=0}^{k_{1}} \frac{1}{2} \tilde{\theta}^{T}(k+1)\left(1-\lambda_{1}(k)\right) F^{-1}(k) \tilde{\theta}(k+1) \\
& \quad+\sum_{k=0}^{k_{1}} \frac{1}{2}[\tilde{\theta}(k+1)-\tilde{\theta}(k)]^{T} F^{-1}(k)[\tilde{\theta}(k+1)-\tilde{\theta}(k)] \\
& \quad+\underbrace{\sum_{k=0}^{k_{1}} \frac{1}{2}\left[\tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k)\right]}_{\frac{1}{2} \tilde{\theta}^{T}\left(k_{1}+1\right) F^{-1}\left(k_{1}\right) \tilde{\theta}\left(k_{1}+1\right)-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1}(0) \tilde{\theta}(0) \geq-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1}(0) \tilde{\theta}(0)} \tag{3}
\end{align*}
$$

Summary

In summary, the NL block indeed satisfies Popov inequality. For stability of PAA, it is sufficient that

$$
H\left(z^{-1}\right)-\frac{\lambda}{2} \text { is SPR }
$$

Appendix: derivation of (3)

$$
\begin{align*}
& \sum_{k=0}^{k_{1}} \frac{\tilde{\theta}^{T}(k+1) F^{-1}(k)(\tilde{\theta}(k+1)-\tilde{\theta}(k))}{}+\frac{1}{2} \tilde{\theta}^{T}(k+1)\left[F^{-1}(k+1)-\lambda_{1}(k) F^{-1}(k)\right] \tilde{\theta}(k+1) \\
= & \sum_{k=0}^{k_{1}} 0 \frac{\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)}{}+\frac{1}{2} \tilde{\theta}^{T}(k+1)\left[F^{-1}(k+1)-\lambda_{1}(k) F^{-1}(k)\right] \tilde{\theta}(k+1) \\
= & \sum_{k=0}^{k_{1}} \frac{\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)+\frac{1}{2} \tilde{\theta}^{T}(k+1)\left[F^{-1}(k+1)-\underline{\left.\lambda_{1}(k) F^{-1}(k)\right] \tilde{\theta}(k+1)}\right.}{=} \sum_{k=0}^{k_{1}} \frac{1}{\frac{1}{2}} \tilde{\theta}^{T}(k+1)\left(1-\lambda_{1}(k)\right) F^{-1}(k) \tilde{\theta}(k+1)+\frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k) \\
& \quad+\frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1)
\end{align*}
$$

The term $\frac{1}{2} \tilde{\theta}^{T}(k+1)\left(1-\lambda_{1}(k)\right) F^{-1}(k) \tilde{\theta}(k+1)$ is always none-negative if $1-\lambda_{1}(k) \geq 0$, which is the assumption in the forgetting factor definition. We only need to worry about

$$
\begin{equation*}
\sum_{k=0}^{k_{1}} \frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)+\frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1) \tag{5}
\end{equation*}
$$

Appendix: derivation of (3)

Notice that
$\frac{1}{2}[\tilde{\theta}(k+1)-\tilde{\theta}(k)]^{T} F^{-1}(k)[\tilde{\theta}(k+1)-\tilde{\theta}(k)]=\underline{\frac{1}{2}} \tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)+\frac{1}{2} \tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k)$
In (5), there is a cross product term $\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)$ but no $\tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k)$. Add and substract terms to complete the squares. (5) becomes

$$
\begin{aligned}
& \sum_{k=0}^{k_{1}} \frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k+1)-\frac{1}{2} \underline{\tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k)} \\
& +\frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k+1) F^{-1}(k) \tilde{\theta}(k)+\frac{1}{2} \tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k) \\
= & \sum_{k=0}^{k_{1}} \frac{1}{2} \tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1)-\frac{1}{2} \tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k) \\
& +\underbrace{\frac{1}{2}[\tilde{\theta}(k+1)-\tilde{\theta}(k)]^{T} F^{-1}(k)[\tilde{\theta}(k+1)-\tilde{\theta}(k)]}_{\geq 0}
\end{aligned}
$$

Appendix: derivation of (3)

Summarizing, we get

$$
\begin{aligned}
& \sum_{k=0}^{k_{1}} w(k) s(k)=\sum_{k=0}^{k_{1}} \frac{1}{2} \tilde{\theta}^{T}(k+1)\left(1-\lambda_{1}(k)\right) F^{-1}(k) \tilde{\theta}(k+1) \\
& +\sum_{k=0}^{k_{1}} \frac{1}{2}[\tilde{\theta}(k+1)-\tilde{\theta}(k)]^{T} F^{-1}(k)[\tilde{\theta}(k+1)-\tilde{\theta}(k)] \\
& +\underbrace{\sum_{1}}_{\frac{1}{2} \tilde{\theta}^{T}\left(k_{1}+1\right) F^{-1}\left(k_{1}+1\right) \tilde{\theta}\left(k_{1}+1\right)-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1}(0) \tilde{\theta}(0)} \frac{1}{2}\left[\tilde{\theta}^{T}(k+1) F^{-1}(k+1) \tilde{\theta}(k+1)-\tilde{\theta}^{T}(k) F^{-1}(k) \tilde{\theta}(k)\right]
\end{aligned}
$$

hence

$$
\sum_{k=0}^{k_{1}} w(k) s(k) \geq-\frac{1}{2} \tilde{\theta}^{T}(0) F^{-1}(0) \tilde{\theta}(0)
$$

Summary

1. Big picture

Series-parallel adjustable system (equation-error method) Parallel adjustable system (output-error method)
2. RLS-based parallel PAA

Formulas
Stability requirement for PAAs with fixed adaptation gain Stability requirement for PAAs with time-varying adaptation gain
3. Parallel PAAs with relaxed SPR requirements
4. PAAs with time-varying adaptation gains (revisit)

